Kinetics

So many equations...so many units...

Summary of Kinetics Equations			
Order	Zero	First	Second
Rate Law	Rate $=$ k	Rate = $k[A]$	Rate = $k[A]^2$
Integrated Rate Law y = mx + b	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
Plot needed to give a straight line "Graph C, N, R"	[A] versus t	$\ln[A]$ versus t	$\frac{1}{[A]}$ versus t
Relationship of rate constant (k) to the slope of the straight line	Slope = $-k$	Slope = $-k$	Slope = k
Units on rate constant (k)	$\frac{M}{s} = Ms^{-1}$ $= \frac{mol}{L \cdot s}$	$\frac{1}{s} = s^{-1}$	$\frac{1}{M \cdot s} = M^{-1}s^{-1}$ $= \frac{L}{mol \cdot s}$
Half Life Equation Use integrated law when solving other half life related problems	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k [A]_0}$

Arrhenius Equation

$$k = Ae^{-Ea/RT}$$

k = rate constant Ea = Activation Energy T = Temperature A = Frequency Factor $R = 8.31 \text{ J/mol} \cdot \text{K}$

When Graphing...

Graph ln(k) versus $\frac{1}{T}$

$$ln(k) = \left(-\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + ln(A)$$

$$y \quad = \quad m \qquad x \ + \quad b$$

Finding Units for k

Remember: $rate = k[A]^{x}[B]^{y} etc \dots$

> Rearrange: $k = \frac{rate}{[A]^{x}[B]^{y} etc...}$

Remember:

 $rate units = \frac{M}{s}$ Concentration unts = M Overall Order = (x + y + etc ...)

Substitute in your units and rewrite: $k = \frac{M/s}{M^{(x+y+etc...)}} \rightarrow k = \frac{M}{M^{(x+y+etc...)*s}} \rightarrow \text{then cancel out units}$

Units for k based on overall order of reaction				
$k = \frac{M}{M^{(x+y+etc)\cdot s}}$				
Overall Order	Example of Units Plugged In	Final Units for k		
0	$k = \frac{M}{M^{(0)} \cdot s} \qquad \qquad = \frac{M}{1 \cdot s}$	$\frac{M}{s} = Ms^{-1}$		
1	$k = \frac{M}{M^{(1)} \cdot s} \qquad = \frac{M}{M \cdot s}$	$\frac{1}{s} = s^{-1}$		
2	$k = \frac{M}{M^{(2)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot s}$	$\frac{1}{M \cdot s} = M^{-1}s^{-1}$		
3	$k = \frac{M}{M^{(3)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot M \cdot s}$	$\frac{1}{M^2 \cdot s} = M^{-2}s^{-1}$		
4	$k = \frac{M}{M^{(4)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot M \cdot M \cdot s}$	$\frac{1}{M^3 \cdot s} = M^{-3}s^{-1}$		
Etcetc				

Remember: $M = \frac{mol}{L}$ $\frac{1}{M} = M^{-1} = \frac{L}{mol}$

You may see this substituted into k units.

For example:
$$M^{-1}s^{-1} = \frac{L}{mol \cdot s}$$