## Kinetics

## So many equations....So many units...



## Arrhenius Equation

$$
k=A e^{-E a / R T}
$$

## When Graphing...

$\mathrm{k}=$ rate constant
Ea $=$ Activation Energy
T = Temperature
A = Frequency Factor
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Graph $\ln (\mathrm{k})$ versus $\frac{1}{T}$
$\ln (k)=\left(-\frac{E_{a}}{R}\right)\left(\frac{1}{T}\right)+\ln (A)$
$y=m x+b$

## Finding Units for $\mathbf{k}$

Remember:

$$
\text { rate }=k[A]^{x}[B]^{y} \text { etc ... }
$$

Rearrange:

$$
\boldsymbol{k}=\frac{\text { rate }}{[A]^{x}[B]^{y} \text { etc.... }}
$$

Remember:

$$
\text { rate units }=\frac{M}{s}
$$

Concentration unts $=M$ Overall Order $=(x+y+e t c \ldots)$

Substitute in your units and rewrite:
$k=\frac{M / s}{M^{(x+y+e t c \ldots)}} \rightarrow \boldsymbol{k}=\frac{M}{M^{(x+y+e t c . . .) s}} \rightarrow$ then cancel out units

| Units for $k$ based on overall order of reaction$k=\frac{M}{M^{(x+y+e t c \ldots) \cdot s}}$ |  |  |
| :---: | :---: | :---: |
| Overall Order | Example of Units Plugged In | Final Units for $\mathbf{k}$ |
| 0 | $k=\frac{M}{M^{(0)} \cdot s} \quad=\frac{M}{1 \cdot \boldsymbol{s}}$ | $\frac{M}{s}=M s^{-1}$ |
| 1 | $k=\frac{M}{M^{(1)} \cdot S} \quad=\frac{M}{M \cdot S}$ | $\frac{1}{s}=s^{-1}$ |
| 2 | $k=\frac{M}{M^{(2)} \cdot S} \quad=\frac{M T}{M \cdot M \cdot S}$ | $\frac{1}{M \cdot s}=M^{-1} s^{-1}$ |
| 3 | $k=\frac{M}{M^{(3)} \bullet S} \quad=\frac{M}{M \bullet M \bullet M \bullet S}$ | $\frac{1}{M^{2} \cdot s}=M^{-2} s^{-1}$ |
| 4 | $k=\frac{M}{M^{(4)} \bullet s} \quad=\frac{M}{M \cdot M \cdot M \bullet M \bullet S}$ | $\frac{1}{M^{3} \cdot s}=M^{-3} s^{-1}$ |
| Etc...etc...etc... |  |  |

Remember: $M=\frac{\text { mol }}{L} \quad \frac{1}{M}=M^{-1}=\frac{L}{m o l}$

You may see this substituted into $k$ units.
For example: $\mathrm{M}^{-1 s^{-1}}=\frac{L}{\text { mol } \cdot \mathrm{s}}$

